fbpx

Scroll down for references for this edition

PASSWORD:  Diabetes Management Journal is a medical journal exclusively for healthcare professionals. Apply for access here:

Image

Diabetes Management Journal August 2022 References

NEWS & VIEWS REFERENCES

Predictors of sleep disorders in people with diabetes and venous insufficiency

  1. Demirtaş, H., Dolu, İ. The prevalence of poor sleep quality and its association with the risk of obstructive sleep apnea and restless legs syndrome in diabetic patients treated with cyanoacrylate glue for varicose veins. Sleep Breath (2022). https://doi.org/10.1007/s11325-022-02676-1
  2. Almeida JI, Javier JJ, Mackay EG, Bautista C, Cher DJ, Proebstle TM. Two-year follow-up of first human use of cyanoacrylate adhesive for treatment of saphenous vein incompetence. Phlebology. 2015 Jul;30(6):397-404. doi: 10.1177/0268355514532455. Epub 2014 Apr 30. PMID: 24789750.
  3. Diabetes.co.uk Diabetes and Sleep (ed. note) https://www.diabetes.co.uk/diabetes-and-sleep.html

 The cost of hybrid closed loop therapy for youth with T1D

  1. Pease A, Callander E, Zomer E, Abraham MB, Davis EA, Jones TW, Liew D, Zoungas S. The Cost of Control: Cost-Effectiveness Analysis of Hybrid Closed-Loop Therapy in Youth. Diabetes Care 2022; dc212019. https://doi.org/10.2337/dc21-2019

 The story of an unloved app

  1. Buss VH, Varnfield M, Harris M, Barr M. Remotely Conducted App-Based Intervention for Cardiovascular Disease and Diabetes Risk Awareness and Prevention: Single-Group Feasibility Trial. JMIR Hum Factors. 2022 Jul 1;9(3):e38469. doi: 10.2196/38469. PMID: 35776504.
  2. Publication bias: Why null results are not necessarily ‘dull’ results. University of Sydney News. Accessed July 2, 2022 www.sydney.edu.au/science/news-and-events/2021/11/22/publication-bias-why-null-results-are-not-necessarily-dull-re.html

 Increased risk of cholecystitis with DPP-4 inhibitors and GLP-1 Ras

  1. Atlay, K. DPP-4 inhibitors linked to increased risk of cholecystitis. AusDoc Specialist Update, 12 July 2022 https://www.ausdoc.com.au/specialist-update/dpp4-inhibitors-linked-increased-risk-cholecystitis Accessed 13 July 2022
  2. He L, Wang J, Ping F, Yang N, Huang J, Li W et al. Association of Glucagon-Like Peptide-1 Receptor Agonist Use With Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med. 2022;182(5):513–519. doi:10.1001/jamainternmed.2022.0338
  3. He L, Wang J, Ping F, Yang N, Huang J, Li W et al. Dipeptidyl peptidase-4 inhibitors and gallbladder or biliary disease in type 2 diabetes: systematic review and pairwise and network meta-analysis of randomised controlled trials BMJ 2022; 377:e068882 doi:10.1136/bmj-2021-068882

Could some T1D be preventable?

  1. ADA meeting news. Kelly West Award Lecture outlines precision prevention for type 1 diabetes. https://www.adameetingnews.org/live-updates/session-coverage/kelly-west-award-lecture-outlines-precision-prevention-for-type-1-diabetes/ Accessed June 29 2022.
  2. Cruz-Tapias P, Castiblanco J, Anaya JM. HLA Association with Autoimmune Diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 17. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459459/

FEATURE REFERENCES

p10-14 Diabetic Autonomic Neuropathy
p11-12 Cardiac Autonomic Neuropathy with Diabetes

  1. Gaspar L, Kruzliak P, Komornikova A, Celecova Z, Krahulec B, Balaz D, et al. Orthostatic hypotension in diabetic patients-10-year follow-up study. J Diabetes Complications. 2016;30(1):67-71.
  2. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010;33(7):1578-84.
  3. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956-62.
  4. Iwasaki S, Kozawa J, Fukui K, Iwahashi H, Imagawa A, Shimomura I. Coefficient of variation of R-R interval closely correlates with glycemic variability assessed by continuous glucose monitoring in insulin-depleted patients with type 1 diabetes. Diabetes Res Clin Pract. 2015;109(2):397-403.
  5. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220-2.
  6. Gibbons CH, Freeman R, Tecilazich F, Dinh T, Lyons TE, Gnardellis C, et al. The evolving natural history of neurophysiologic function in patients with well-controlled diabetes. J Peripher Nerv Syst. 2013;18(2):153-61.
  7. Singer W, Sandroni P, Opfer-Gehrking TL, Suarez GA, Klein CM, Hines S, et al. Pyridostigmine treatment trial in neurogenic orthostatic hypotension. Arch Neurol. 2006;63(4):513-8.
  8. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes. 2018 Jan 15;9(1):1-24. doi: 10.4239/wjd.v9.i1.1. PMID: 29359025; PMCID: PMC5763036.

p13-14 Gastroparesis and its implications for glycaemic management

  1. Horowitz M, Maddox AF, Wishart JM, Harding PE, Chatterton BE, Shearman DJ. Relationships between oesophageal transit and solid and liquid gastric emptying in diabetes mellitus. Eur J Nucl Med. 1991;18(4):229-34.
  2. Horowitz M, Harding PE, Maddox AF, Wishart JM, Akkermans LM, Chatterton BE, Shearman DJ. Gastric and oesophageal emptying in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1989;32(3):151-9.
  3. Talley NJ, Verlinden M, Jones M. Can symptoms discriminate among those with delayed or normal gastric emptying in dysmotility-like dyspepsia? Am J Gastroenterol. 2001;96(5):1422-8.
  4. Parkman HP, Yates KP, Hasler WL, Nguyan L, Pasricha PJ, Snape WJ, Farrugia G, Calles J, Koch KL, Abell TL, McCallum RW, Petito D, Parrish CR, Duffy F, Lee L, Unalp-Arida A, Tonascia J, Hamilton F, Consortium NGCR. Dietary intake and nutritional deficiencies in patients with diabetic or idiopathic gastroparesis. Gastroenterology. 2011;141(2):486-98.
  5. Schol J, Wauters L, Dickman R, Drug V, Mulak A, Serra J, Enck P, Tack J. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on gastroparesis. United European Gastroenterol J. 2021;9(7):883-4.
  6. Phillips LK, Deane AM, Jones KL, Rayner CK, Horowitz M. Gastric emptying and glycaemia in health and diabetes mellitus. Nat Rev Endocrinol. 2015;11(2):112-28.
  7. Daly A, Hartnell S, Boughton CK, Evans M. Hybrid closed-loop to manage gastroparesis in people with type 1 diabetes: A case series. J Diabetes Sci Technol. 2021;15(6):1216-23.
  8. Limketkai BN, LeBrett W, Lin L, Shah ND. Nutritional approaches for gastroparesis. Lancet Gastroenterol Hepatol. 2020;5(11):1017-26.
  9. Olausson EA, Storsrud S, Grundin H, Isaksson M, Attvall S, Simren M. A small particle size diet reduces upper gastrointestinal symptoms in patients with diabetic gastroparesis: A randomized controlled trial. Am J Gastroenterol. 2014;109(3):375-85.
  10. Woodhouse S, Hebbard G, Knowles SR. Psychological controversies in gastroparesis: a systematic review. World J Gastroenterol. 2017;23(7):1298-309.
  11. Malamood M, Roberts A, Kataria R, Parkman HP, Schey R. Mirtazapine for symptom control in refractory gastroparesis. Drug Des Devel Ther. 2017;11:1035-41.
  12. Al-Saffar A, Lennernas H, Hellstrom PM. Gastroparesis, metoclopramide, and tardive dyskinesia: risk revisited. Neurogastroenterol Motil. 2019;31(11):13617.
  13. Tendulkar P, Kant R, Rana S, Yadav P, Mirza AA, Agarwal D. Efficacy of pro-kinetic agents in type 2 diabetes mellitus patients with gastroparesis using lactulose hydrogen breath testing: a randomized trial. Cureus. 2022;14(1):20990.
  14. Maganti K, Onyemere K, Jones MP. Oral erythromycin and symptomatic relief of gastroparesis: a systematic review. Am J Gastroenterol. 2003;98(2):259-63.
  15. Larson JM, Tavakkoli A, Drane WE, Toskes PP, Moshiree B. Advantages of azithromycin over erythromycin in improving the gastric emptying half-time in adult patients with gastroparesis. J Neurogastroenterol Motil. 2010;16(4):407-13.
  16. Thielemans L, Depoortere I, Perret J, Robberecht P, Liu Y, Thijs T, Carreras C, Burgeon E, Peeters TL. Desensitization of the human motilin receptor by motilides. J Pharmacol Exp Ther. 2005;313(3):1397-405.
  17. Parkman HP, Van Natta ML, Abell TL, McCallum RW, Sarosiek I, Nguyen L, Snape WJ, Koch KL, Hasler WL, Farrugia G, Lee L, Unalp-Arida A, Tonascia J, Hamilton F, Pasricha PJ. Effect of nortriptyline on symptoms of idiopathic gastroparesis: The NORIG randomized clinical trial. JAMA. 2013;310(24):2640-9.
  18. Horowitz M, Jones KL, Rayner CK, Read NW. 'Gastric' hypoglycaemia- an important concept in diabetes management. Neurogastroenterol Motil. 2006;18(6):405-7.
  19. Linnebjerg H, Park S, Kothare PA, Trautmann ME, Mace K, Fineman M, Wilding I, Nauck M, Horowitz M. Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. Regul Pept. 2008;151(1-3):123-9.
  20. Jones KL, Huynh LQ, Hatzinikolas S, Rigda RS, Phillips LK, Pham HT, Marathe CS, Wu T, Malbert CH, Stevens JE, Lange K, Rayner CK, Horowitz M. Exenatide once weekly slows gastric emptying of solids and liquids in healthy, overweight people at steady-state concentrations. Diabetes Obes Metab. 2020;22(5):788-97.
  21. Deane AM, Chapman MJ, Fraser RJ, Summers MJ, Zaknic AV, Storey JP, Jones KL, Rayner CK, Horowitz M. Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med. 2010;38(5):1261-9.
  22. Stevens JE, Buttfield M, Wu T, Hatzinikolas S, Pham H, Lange K, Rayner CK, Horowitz M, Jones KL. Effects of sitagliptin on gastric emptying of, and the glycaemic and blood pressure responses to, a carbohydrate meal in type 2 diabetes. Diabetes Obes Metab. 2020;22(1):51-8.
  23. Arts J, Holvoet L, Caenepeel P, Bisschops R, Sifrim D, Verbeke K, Janssens J, Tack J. Clinical trial: a randomized-controlled crossover study of intrapyloric injection of botulinum toxin in gastroparesis. Aliment Pharmacol Ther. 2007;26(9):1251-8.
  24. Friedenberg FK, Palit A, Parkman HP, Hanlon A, Nelson DB. Botulinum toxin A for the treatment of delayed gastric emptying. Am J Gastroenterol. 2008;103(2):416-23.
  25. Kim KH, Lee MS, Choi TY, Kim TH. Acupuncture for symptomatic gastroparesis. Cochrane Database Syst Rev. 2018;12:CD009676.

p16 – 18 Young Onset T2D – the unique opportunities and challenges

  1. Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE. Young-onset type 2 diabetes mellitus - implications for morbidity and mortality. Nat Rev Endocrinol 2020; 16(6): 321-31.
  2. Craig ME, Femia G, Broyda V, Lloyd M, Howard NJ. Type 2 diabetes in Indigenous and non-Indigenous children and adolescents in New South Wales. Med J Aust 2007; 186(10): 497-9.
  3. Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: II. Observations Using the Oral Glucose Tolerance Test. Diabetes Care 2018; 41(8): 1707-16.
  4. Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: I. Observations Using the Hyperglycemic Clamp. Diabetes Care 2018; 41(8): 1696-706.
  5. Bjornstad P, Drews KL, Caprio S, et al. Long-Term Complications in Youth-Onset Type 2 Diabetes. N Engl J Med 2021; 385(5): 416-26.
  6. Dabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of Type 1 Diabetes vs Type 2 Diabetes Diagnosed During Childhood and Adolescence With Complications During Teenage Years and Young Adulthood. JAMA 2017; 317(8): 825-35.
  7. Pavkov ME, Bennett PH, Knowler WC, Krakoff J, Sievers ML, Nelson RG. Effect of youth-onset type 2 diabetes mellitus on incidence of end-stage renal disease and mortality in young and middle-aged Pima Indians. JAMA 2006; 296(4): 421-6.
  8. Krakoff J, Lindsay RS, Looker HC, Nelson RG, Hanson RL, Knowler WC. Incidence of retinopathy and nephropathy in youth-onset compared with adult-onset type 2 diabetes. Diabetes Care 2003; 26(1): 76-81.
  9. Song SH, Hardisty CA. Early onset type 2 diabetes mellitus: a harbinger for complications in later years--clinical observation from a secondary care cohort. Qjm 2009; 102(11): 799-806.
  10. Candler TP, Mahmoud O, Lynn RM, Majbar AA, Barrett TG, Shield JPH. Continuing rise of Type 2 diabetes incidence in children and young people in the UK. Diabet Med 2018; 35(6): 737-44.
  11. Shah AS, Nadeau KJ. The changing face of paediatric diabetes. Diabetologia 2020; 63(4): 683-91.
  12. Mayer-Davis EJ, Ma B, Lawson A, et al. Cardiovascular disease risk factors in youth with type 1 and type 2 diabetes: implications of a factor analysis of clustering. Metab Syndr Relat Disord 2009; 7(2): 89-95.
  13. Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and β-cell function in TODAY. Diabetes Care 2013; 36(6): 1749-57.
  14. Kahn SE, Lachin JM, Zinman B, et al. Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT. Diabetes 2011; 60(5): 1552-60.
  15. Gungor N, Bacha F, Saad R, Janosky J, Arslanian S. Youth Type 2 Diabetes: Insulin resistance, β-cell failure, or both? Diabetes Care 2005; 28(3): 638-44.
  16. Zeitler P, Hirst K, Pyle L, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 2012; 366(24): 2247-56.
  17. Consortium TR. Impact of Insulin and Metformin Versus Metformin Alone on β-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 2018; 41(8): 1717-25.
  18. Tamborlane WV, Barrientos-Pérez M, Fainberg U, et al. Liraglutide in Children and Adolescents with Type 2 Diabetes. N Engl J Med 2019; 381(7): 637-46.
  19. Tamborlane WV, Laffel LM, Shehadeh N, et al. Efficacy and safety of dapagliflozin in children and young adults with type 2 diabetes: a prospective, multicentre, randomised, parallel group, phase 3 study. Lancet Diabetes Endocrinol 2022; 10(5): 341-50.
  20. Wong J, Ross GP, Zoungas S, et al. Management of type 2 diabetes in young adults aged 18-30 years: ADS/ADEA/APEG consensus statement. Med J Aust 2022; 216(8): 422-9.

p20-22 Self- managing diabetes: apps can help with that

  1. Baker IDI Heart and Diabetes Institute. diabetes: the silent pandemic and its impact on Australia. Baker IDI, Diabetes Australia and JDFR; 2012 p. 27.
  2. Trawley S, Baptista S, Browne JL, Pouwer F, Speight J. The Use of Mobile Applications Among Adults with Type 1 and Type 2 Diabetes: Results from the Second MILES—Australia (MILES-2) Study. Diabetes Technol Ther. 2017 Dec;19(12):730–8.
  3. Alam K, Mahumud RA, Alam F, Keramat SA, Erdiaw-Kwasie MO, Sarker AR. Determinants of access to eHealth services in regional Australia. Int J Med Inf. 2019 Nov;131:103960.
  4. AIHW. Rural & remote health, Summary [Internet]. Australian Institute of Health and Welfare. 2019 [cited 2020 Oct 18]. Available from: https://www.aihw.gov.au/reports/rural-remote-australians/rural-remote-health/contents/summary
  5. Davis WA, Peters KE, Makepeace A, Griffiths S, Bundell C, Grant SFA, et al. Prevalence of diabetes in Australia: insights from the Fremantle Diabetes Study Phase II: Prevalence of diabetes in Australia. Intern Med J. 2018 Jul;48(7):803–9.
  6. Sainsbury E, Shi Y, Flack J, Colagiuri S. Burden of Diabetes in Australia: It’s Time For More Action. Sydney, Australia: University of Sydney; 2018.
  7. Berman AH, Kolaas K, Petersén E, Bendtsen P, Hedman E, Linderoth C, et al. Clinician experiences of healthy lifestyle promotion and perceptions of digital interventions as complementary tools for lifestyle behavior change in primary care. BMC Fam Pract. 2018 Aug 21;19(1):139.
  8. Gong E, Zhang Z, Jin X, Liu Y, Zhong L, Wu Y, et al. Quality, Functionality, and Features of Chinese Mobile Apps for Diabetes Self-Management: Systematic Search and Evaluation of Mobile Apps. JMIR MHealth UHealth. 2020 Apr 7;8(4):e14836.
  9. Zhang Y, Li X, Luo S, Liu C, Liu F, Zhou Z. Exploration of Users’ Perspectives and Needs and Design of a Type 1 Diabetes Management Mobile App: Mixed-Methods Study. JMIR MHealth UHealth. 2018 Sep 21;6(9):e11400.
  10. Doyle-Delgado K, Chamberlain JJ. Use of Diabetes-Related Applications and Digital Health Tools by People With Diabetes and Their Health Care Providers. Clin Diabetes. 2020 Dec 1;38(5):449–61.
  11. Adu MD, Malabu UH, Callander EJ, Malau-Aduli AE, Malau-Aduli BS. Considerations for the Development of Mobile Phone Apps to Support Diabetes Self-Management: Systematic Review. JMIR MHealth UHealth. 2018 Jun 21;6(6):e10115.
  12. Baptista S, Trawley S, Pouwer F, Oldenburg B, Wadley G, Speight J. What Do Adults with Type 2 Diabetes Want from the “Perfect” App? Results from the Second Diabetes MILES: Australia (MILES-2) Study. Diabetes Technol Ther. 2019 Jul;21(7):393–9.
  13. Geirhos A, Stephan M, Wehrle M, Mack C, Messner EM, Schmitt A, et al. Standardized evaluation of the quality and persuasiveness of mobile health applications for diabetes management. Sci Rep. 2022 Mar 7;12:3639.
  14. Gordon WJ, Catalini C. Blockchain Technology for Healthcare: Facilitating the Transition to Patient-Driven Interoperability. Comput Struct Biotechnol J. 2018 Jan 1;16:224–30.
  15. Coughlin JW, Martin LM, Zhao D, Goheer A, Woolf TB, Holzhauer K, et al. Electronic Health Record-Based Recruitment and Retention and Mobile Health App Usage: Multisite Cohort Study. J Med Internet Res. 2022 Jun 10;24(6):e34191.
  16. Auf H, Dagman J, Renström S, Chaplin J. GAMIFICATION AND NUDGING TECHNIQUES FOR IMPROVING USER ENGAGEMENT IN MENTAL HEALTH AND WELL-BEING APPS. Proc Des Soc. 2021 Aug;1:1647–56.
  17. Priesterroth L, Grammes J, Holtz K, Reinwarth A, Kubiak T. Gamification and Behavior Change Techniques in Diabetes Self-Management Apps. J Diabetes Sci Technol. 2019 Feb 14;13(5):954–8.
  18. Wright M, Mainous III AG. Can continuity of care in primary care be sustained in the modern health system? Aust J Gen Pract. 2018 Oct 1;47(10):667–9.

p24-26 SGLT-2 inhibitors: Management in acute situations

  1. Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, Pfister M. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009 May;85(5):520-6. doi: 10.1038/clpt.2008.251. Epub 2009 Jan 7. PMID: 19129748.
  2. Australian Diabetes Society. Type 2 diabetes treatment: a new blood glucose management algorithm for type 2 diabetes. ADS; 2020 Dec. http://t2d.diabetessociety.com.au
  3. Australian Government, Department of Health, Pharmaceutical Benefits Scheme. Dapagliflozin. https://www.pbs.gov.au/medicine/item/10011X-11291G-12823X
  4. Australian Government, Department of Health, Pharmaceutical Benefits Scheme. Empagliflozin. https://www.pbs.gov.au/medicine/item/10202Y-10206E-11281R-11314L-12918X
  5. Australian Government, Department of Health, Pharmaceutical Benefits Scheme. Ertugliflozin. https://www.pbs.gov.au/medicine/item/11570y-11571b-11577h-11585r
  6. Liu XY, Zhang N, Chen R, Zhao JG, Yu P. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years. J Diabetes Complications. 2015 Nov-Dec;29(8):1295-303. doi: 10.1016/j.jdiacomp.2015.07.011. Epub 2015 Jul 21. PMID: 26365905.
  7. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010 Jun 26;375(9733):2223-33. doi: 10.1016/S0140-6736(10)60407-2. PMID: 20609968.
  8. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC; EMPA-REG H2H-SU trial investigators. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014 Sep;2(9):691-700. doi: 10.1016/S2213-8587(14)70120-2. Epub 2014 Jun 16. Erratum in: Lancet Diabetes Endocrinol. 2015 Sept;3(9):e7. PMID: 24948511.
  9. Rosenstock J, Frias J, Páll D, Charbonnel B, Pascu R, Saur D, Darekar A, Huyck S, Shi H, Lauring B, Terra SG. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab. 2018 Mar;20(3):520-529. doi: 10.1111/dom.13103. Epub 2017 Oct 2. Erratum in: Diabetes Obes Metab. 2018 Nov;20(11):2708. PMID: 28857451.
  10. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117-28. doi: 10.1056/NEJMoa1504720. Epub 2015 Sep 17. PMID: 26378978.
  11. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS; DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019 Jan 24;380(4):347-357. doi: 10.1056/NEJMoa1812389. Epub 2018 Nov 10. PMID: 30415602.
  12. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Wheeler DC; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Oct 8;383(15):1436-1446. doi: 10.1056/NEJMoa2024816. Epub 2020 Sep 24. PMID: 32970396.
  13. Johnsson KM, Ptaszynska A, Schmitz B, Sugg J, Parikh SJ, List JF. Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J Diabetes Complications. 2013 Sep-Oct;27(5):479-84. doi: 10.1016/j.jdiacomp.2013.04.012. Epub 2013 Jun 24. PMID: 23806570.
  14. Johnsson KM, Ptaszynska A, Schmitz B, Sugg J, Parikh SJ, List JF. Urinary tract infections in patients with diabetes treated with dapagliflozin. J Diabetes Complications. 2013 Sep-Oct;27(5):473-8. doi: 10.1016/j.jdiacomp.2013.05.004. Epub 2013 Jul 10. PMID: 23849632.
  15. Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH. Fournier Gangrene Associated With Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Ann Intern Med. 2019 Jun 4;170(11):764-769. doi: 10.7326/M19-0085. Epub 2019 May 7. PMID: 31060053.
  16. Silverii GA, Dicembrini I, Monami M, Mannucci E. Fournier's gangrene and sodium-glucose co-transporter-2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2020 Feb;22(2):272-275. doi: 10.1111/dom.13900. Epub 2019 Nov 20. PMID: 31637829.
  17. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM; DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008. doi: 10.1056/NEJMoa1911303. Epub 2019 Sep 19. PMID: 31535829.
  18. McGill JB, Subramanian S. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors. Am J Cardiol. 2019 Dec 15;124 Suppl 1:S45-S52. doi: 10.1016/j.amjcard.2019.10.029. PMID: 31741440.
  19. Liu J, Li L, Li S, Wang Y, Qin X, Deng K, Liu Y, Zou K, Sun X. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2020 Sep;22(9):1619-1627. doi: 10.1111/dom.14075. Epub 2020 May 21. PMID: 32364674.
  20. Rosenstock J, Ferrannini E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern With SGLT2 Inhibitors. Diabetes Care. 2015 Sep;38(9):1638-42. doi: 10.2337/dc15-1380. PMID: 26294774.
  21. Thiruvenkatarajan V, Meyer EJ, Nanjappa N, Van Wijk RM, Jesudason D. Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. Br J Anaesth. 2019 Jul;123(1):27-36. doi: 10.1016/j.bja.2019.03.028. Epub 2019 May 3. PMID: 31060732.
  22. Australian Diabetes Society. ALERT UPDATE January 2020: Periprocedural diabetic ketoacidosis (DKA) with SGLT2 inhibitor use. Sydney, NSW: ADS, 2020.
  23. Yabe D, Iwasaki M, Kuwata H, Haraguchi T, Hamamoto Y, Kurose T, Sumita K, Yamazato H, Kanada S, Seino Y. Sodium-glucose co-transporter-2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: A randomized, open-label, 3-arm parallel comparative, exploratory study. Diabetes Obes Metab. 2017 May;19(5):739-743. doi: 10.1111/dom.12848. Epub 2017 Feb 21. PMID: 27990776; PMCID: PMC5412941.
  24. Centre for Perioperative Care. Guideline for perioperative care for people with diabetes mellitus undergoing elective and emergency surgery. 2021.
  25. U.S. Food & Drug Administration. FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings About Too Much Acid in the Blood and Serious Urinary Tract Infections. 2021 [Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious.
  26. Australian Diabetes Society, Australian Diabetes Educators Association, Australian and New Zealand College of Anaesthetists, Diabetes Australia, New Zealand Society for the Study of Diabetes. ALERT - Periprocedural Diabetic Ketoacidosis (DKA) with SGLT2 Inhibitor Use In People with Diabetes 2022 [updated January 2022. Available from: https://diabetessociety.com.au/position-statements.asp.]

p28-31 Diabetes care in the 'deep end'

  1. Watt G et al. General practitioners at the Deep End. Occas Pap R Coll Gen Pract. 2012 Apr; (89):i-viiim 1-40.
  2. The Royal Australian College of General Practitioners. Management of type 2 diabetes: A handbook for general practice. RACGP, East Melbourne, Vic; 2020.
  3. Lawson E. Debrief: Digital minimalism and the Deep End. BrJGP. 2019; 69(681): 189.
  4. Hart JT. The inverse care law. Lancet 1971;297(7696):405–12.
  5. Sturgiss A, Tait P, Douglas K, Chew J, Baglow S, Watt G. GPs at the Deep End: Identifying and addressing social disadvantage wherever it lies. AJGP. 2019 Nov; 38(11):811-13.
  6. Black A, Vally H, Morris P, Daniel M, Esterman A, Smith F, O’Dea K. Health outcomes of a subsidised fruit and vegetable program for Aboriginal children in northern New South Wales. Med J Aust 2013; 199(1): 46-50.

p32-34 Benefits of plant-based diets

  1. Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J [Internet]. 2013 Spring [cited 2022 Jun 9];17(2):61–6. http://dx.doi.org/10.7812/TPP/12-085
  2. Olfert, M.D., Wattick, R.A. Vegetarian Diets and the Risk of Diabetes. Curr Diab Rep 18, 101 (2018). https://doi.org/10.1007/s11892-018-1070-9 Le LT, Sabaté J. Beyond meatless, the health effects of vegan diets: findings from the Adventist cohorts. Nutrients [Internet]. 2014;6(6):2131–47. Available from: http://dx.doi.org/10.3390/nu6062131
  3. Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutr [Internet]. 2003 [cited 2022 Jun 9];6(3):259–69. Available from: https://pubmed.ncbi.nlm.nih.gov/12740075/
  4. Alessandra Puddu, Roberta Sanguineti, Fabrizio Montecucco, Giorgio Luciano Viviani, "Evidence for the Gut Microbiota Short-Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes", Mediators of Inflammation, vol. 2014, Article ID 162021, 9 pages, 2014. https://doi.org/10.1155/2014/162021
  5. Salamone, D., Rivellese, A.A. & Vetrani, C. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetol 58, 1131–1138 (2021). https://doi.org/10.1007/s00592-021-01727-5
  6. Le LT, Sabaté J. Beyond Meatless, the Health Effects of Vegan Diets: Findings from the Adventist Cohorts. Nutrients. 2014; 6(6):2131-2147. https://doi.org/10.3390/nu6062131
  7. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther [Internet]. 2014;4(5):373–82. Available from: http://dx.doi.org/10.3978/j.issn.2223-3652.2014.10.04
  8. Cui X, Wang B, Wu Y, Xie L, Xun P, Tang Q, Cai W, Shen X. Vegetarians have a lower fasting insulin level and higher insulin sensitivity than matched omnivores: A cross-sectional study. Nutr Metab Cardiovasc Dis. 2019 May;29(5):467-473. doi: 10.1016/j.numecd.2019.01.012. Epub 2019 Feb 2. PMID: 30956029.
  9. Winston JC. Health effects of vegan diets, The American Journal of Clinical Nutrition, Volume 89, Issue 5, May 2009, Pages 1627S–1633S, https://doi.org/10.3945/ajcn.2009.26736N
  10. NHMRC. A Modelling System to Inform the Revision of the Australian Guide to Healthy Eating. National Health and Medical Research Council; Canberra, Australia: 2011. https://www.eatforhealth.gov.au/guidelines/guideline-development

-- ENDS --